Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Numerical Study of Ultra Low Solidity Airfoil Diffuser in an Automotive Turbocharger Compressor

2009-04-20
2009-01-1470
For the application of advanced clean combustion technologies, such as diesel HCCI/LTC, a compressor with high efficiency over a broad operation range is required to supply a high amount of EGR with minimum pumping loss. A compressor with high pitch of vaneless diffuser would substantially improve the flow range of the compressor, but it is at the cost of compressor efficiency, especially at low mass flow area where most of the city driving cycles resides. In present study, an ultra low solidity compressor vane diffuser was numerically investigated. It is well known that the flow leaving the impeller is highly distorted, unsteady and turbulent, especially at relative low mass flow rate and near the shroud side of the compressor. A conventional vaned diffuser with high stagger angle could help to improve the performance of the compressor at low end. However, adding diffuser vane to a compressor typically restricts the flow range at high end.
Technical Paper

Numerical Simulation of an Opposed-Piston Two-Stroke Diesel Engine

2015-04-14
2015-01-0404
This paper investigates the scavenging process, in-cylinder gas motion in an opposed-piston two-stroke diesel engine and compares the results of in-cylinder gas motion to those of a uniflow-scavenged two stroke conventional engine using computational fluid dynamics engine models. The effect of piston motion profile of OP2S on the scavenging performance was discussed and its optimization was developed. Subsequently, CFD simulation on full load scavenging process was conducted at the same intake pressure and simulation at 2500rpm showed an optimum scavenging performance evaluated by delivery ratio, trapping efficiency and scavenging efficiency. Enhanced axial velocity and average turbulence kinetic energy around minimum volume center were found for OP2S diesel engine compared to the conventional two-stroke diesel engine.
Technical Paper

Numerical Simulation and Optimization for Combustion of an Opposed Piston Two-Stroke Engine for Unmanned Aerial Vehicle (UAV)

2020-04-14
2020-01-0782
An opposed piston two-stroke engine is more suitable for use in an unmanned aerial vehicle because of its small size, excellent self-balancing, stable operation, and low noise. Consequently, in this study, based on experimental data for a prototype opposed piston two-stroke engine, numerical simulation models were established using GT-POWER for 1D simulation and AVL-FIRE for 3D CFD simulation. The mesh grid and solver parameters for the numerical model of the CFD simulation were determined to guarantee the accuracy of the numerical simulation, before studying and optimizing the ventilation efficiency of the engine with different dip angles. Furthermore, the fuel spray and combustion were analyzed and optimized in details.
Technical Paper

Multicomponent Liquid and Vapor Fuel Distribution Measurements in the Cylinder of a Port-Injected, Spark-Ignition Engine

2000-03-06
2000-01-0243
A 2.5L, V-6, port-injected, spark-ignition engine was modified for optical access by separating the head from the block and installing a Bowditch extended piston with a fused-silica top and a fused-silica liner in one of the cylinders. Two heads were employed in the study. One produced swirl and permitted modulation of the swirl level, and another produced a tumbling flow in the cylinder. Planar laser-induced exciplex fluorescence, which allows the simultaneous, but separate, imaging of liquid and vapor fuel, was extended to capture components of different volatilities in a model fuel designed to simulate the distillation curve of a typical gasoline. The exciplex fluorescence technique was calibrated in a separate cell where careful control of mixture composition, temperature and pressure was possible. The results show that large-scale motion induced during intake is critical for good mixing during the intake and compression strokes.
Technical Paper

Modeling of Blow-by in a Small-Bore High-Speed Direct-Injection Optically Accessible Diesel Engine

2006-04-03
2006-01-0649
The blow-by phenomenon is seldom acquainted with diesel engines, but for a small bore HSDI optical diesel engine, the effects are significant. A difference in peak pressure up to 25% can be observed near top-dead-center. To account for the pressure differences, a 0-D crevice flow model with a dynamic ring pack model was incorporated into the KIVA code to determine the amount of blow-by. The ring pack model will take into account the forces acting on the piston rings, the position of the piston rings, and the pressure located at each region of the crevice volume at every time step. The crevice flow model takes into consideration the flow through the circumferential gap, ring gap, and the ring side clearance. As a result, the cylinder mass, trapped mass in the crevice regions, and the blow-by values are known. Validation of the crevice model is accomplished by comparing the in-cylinder motoring pressure trace with the experimental motoring data.
Technical Paper

Modeling and Simulation of a Dual Fuel (Diesel/Natural Gas) Engine With Multidimensional CFD

2003-03-03
2003-01-0755
A dual fuel engine simulation model was formulated and the combustion process of a diesel/natural gas dual fuel engine was studied using an updated KIVA-3V Computational Fluid Dynamic (CFD) code. The dual fuel engine ignition and combustion process is complicated since it includes diesel injection, atomization and ignition, superimposed with premixed natural gas combustion. However, understanding of the combustion process is critical for engine performance optimization. Starting from a previously validated Characteristic-Timescale diesel combustion model, a natural gas combustion model was implemented and added to simulate the ignition and combustion process in a dual fuel bus engine. Available engine test data were used for validation of both the diesel-only and the premixed spark-ignition operation regimes. A new formulation of the Characteristic-Timescale combustion model was then introduced to allow smooth transition between the combustion regimes.
Technical Paper

Modal Analysis of an Internal Combustion Engine with Finite Element Method based on Contact Calculation

2008-06-23
2008-01-1583
Contact dynamic characteristics of an internal combustion engine structure were studied by the finite element method and experimental verification. Based on theoretical analysis, contact modal calculation of an internal-combustion engine with finite element method is carried out by the ADINA software. Dynamic behavior of the entire engine structure was investigated. Rigid bar connection and coupling connection were introduced for the purpose of comparison with contact analysis and experiment results. The experimental results are in good agreement with the theoretical analysis and FEM results. From the study, it can be demonstrated that dynamic behavior of the engine structure with a large preload shows linear characteristics. Compared with the other models, the procedure presented in this paper is more effective and useful in view of operational time and experience of analysts.
Technical Paper

Methane Jet Penetration in a Direct-Injection Natural Gas Engine

1998-02-01
980143
A direct-injection natural gas (DING) engine was modified for optical access to allow the use of laser diagnostic techniques to measure species concentrations and temperatures within the cylinder. The injection and mixing processes were examined using planar laser-induced fluorescence (PLIF) of acetone-seeded natural gas to obtain qualitative maps of the fuel/air ratio. Initial acetone PLIF images were acquired in a quiescent combustion chamber with the piston locked in a position corresponding to 90° BTDC. A series of single shot images acquired in 0.1 ms intervals was used to measure the progression of one of the fuel jets across the cylinder. Cylinder pressures as high as 2 MPa were used to match the in-cylinder density during injection in a firing engine. Subsequent images were acquired in a motoring engine at 600 rpm with injections starting at 30, 20, and 15° BTDC in 0.5 crank angle degree increments.
Technical Paper

Measurements of the Evaporation Behavior of the Film of Fuel Blends

2018-04-03
2018-01-0290
The formation of fuel film in the combustion cylinder affects the mixing process of the air and the fuel, and the process of the combustion propagation in engines. Some models of film evaporation have been developed to predict the evaporation behavior of the film, but rarely experimental results have been produced, especially when the temperature is high. In this study, the evaporation behavior of the film of different species of oil and their blends at different temperature are observed. The 45 μL films of isooctane, 1-propanol, 1-butanol, 1-pentanol, and their blends were placed on a quartz glass substrate in the closed temperature-controlled chamber. The shape change of the film during evaporation was monitored by a high-speed camera through the window of the chamber. First, the binary blends film of isooctane and one of the other three oils were evaporated at 30 °C, 50 °C, 70 °C and 90 °C.
Technical Paper

Macroscopic and Microscopic Characteristics of Flash Boiling Spray with Binary Fuel Mixtures

2019-04-02
2019-01-0274
Flash boiling has drawn much attention recently for its ability to enhance spray atomization and vaporization, while providing better fuel/air mixing for gasoline direct injection engines. However, the behaviors of flash boiling spray with multi-component fuels have not been fully discovered. In this study, isooctane, ethanol and the mixtures of the two with three blend ratios were chosen as the fuels. Measurements were performed with constant fuel temperature while ambient pressures were varied to adjust the superheated degree. Macroscopic and microscopic characteristics of flash boiling spray were investigated using Diffused Back-Illumination (DBI) imaging and Phase Doppler Anemometry (PDA). Comparisons between flash boiling sprays with single component and binary fuel mixtures were performed to study the effect of fuel properties on spray structure as well as atomization and vaporization processes.
Technical Paper

Machinability of MADI™

2005-04-11
2005-01-1684
High strength materials have desirable mechanical properties but often cannot be machined economically, which results in unacceptably high finished component cost. MADI™ (machinable austempered ductile iron) overcomes this difficultly and provides the highly desirable combination of high strength, excellent low temperature toughness, good machinability and attractive finished component cost. The Machine Tool Systems Research Laboratory at the University of Illinois at Urbana-Champaign performed extensive machinability testing and determined the appropriate tools, speeds and feeds for milling and drilling (https://netfiles.uiuc.edu/malkewcz/www/MADI.htm). This paper provides the information necessary for the efficient and economical machining of MADI™ and provides comparative machinability data for common grades of ductile iron (EN-GJS-400-18, 400-15, 450-10, 500-7, 600-3 & 700-2) for comparison.
Technical Paper

Low Temperature Combustion within a Small Bore High Speed Direct Injection (HSDI) Diesel Engine

2005-04-11
2005-01-0919
Homogeneous Charge Compression Ignition (HCCI) combustion employing single main injection strategies in an optically accessible single cylinder small-bore High-Speed Direct Injection (HSDI) diesel engine equipped with a Bosch common-rail electronic fuel injection system was investigated in this work. In-cylinder pressure was taken to analyze the heat release process for different operating parameters. The whole cycle combustion process was visualized with a high-speed digital camera by imaging natural flame luminosity. The flame images taken from both the bottom of the optical piston and the side window were taken simultaneously using one camera to show three dimensional combustion events within the combustion chamber. The engine was operated under similar Top Dead Center (TDC) conditions to metal engines. Because the optical piston has a realistic geometry, the results presented are close to real metal engine operations.
Technical Paper

Investigation on the Deformation of Injector Components and Its Influence on the Injection Process

2020-04-14
2020-01-1398
The deformation of injector components cannot be disregarded as the pressure of the system increases. Deformation directly affects the characteristics of needle movement and injection quantity. In this study, structural deformation of the nozzle, the needle and the control plunger under different pressures is calculated by a simulation model. The value of the deformation of injector components is calculated and the maximum deformation location is also determined. Furthermore, the calculated results indicates that the deformation of the control plunger increases the control chamber volume and the cross-section area between the needle and the needle seat. A MATLAB model is established to The influence of structural deformation on needle movement characteristics and injection quantity is investigate by a numerical model. The results show that the characteristic points of needle movement are delayed and injection quantity increases due to the deformation.
Technical Paper

Investigation of Nozzle Clearance Effects on a Radial Turbine: Aerodynamic Performance and Forced Response

2013-04-08
2013-01-0918
Variable nozzle turbine (VNT) technology has become a popular technology for diesel engine application. To pivot the nozzle vane and adjust the turbine operating condition, nozzle clearances are inevitable on both the hub and shroud side of turbine housing. Leakage flow formed inside the nozzle clearance leads to extra flow loss and makes the nozzle exit flow less uniform, thus further affects downstream aerodynamic performance of the rotor. As the leakage mixing with nozzle wake flow, the process is highly unsteady, which increases the fluctuation amplitude of transient load on the rotating turbine wheels. In present paper, firstly steady CFD analysis of a turbocharger turbine was performed at different nozzle openings. Then unsteady simulation of the turbine was carried out to investigate the interaction between the leakage flow through nozzle clearance and the main flow. Nozzle clearance's effect on turbine performance was investigated.
Technical Paper

Injector Nozzle Coking With Oxygenated Diesel

2001-05-07
2001-01-2016
The use of substances other than petroleum based fuels for power sources is not a new concept. Prior to the advent of petroleum fueled vehicles numerous other substances were used to create mobile sources of power. As the world's petroleum supply dwindles, alternative fuel sources are sought after to replace petroleum fuels. Many industries are particularly interested in the development of renewable fuel sources, or biologically derived fuel sources, which includes ethanol. The use of No. 2 diesel as well as many alternative fuels in compression ignition engines result in injector coking. Injector coking can severely limit engine performance by limiting the amount of fuel delivered to the combustion chamber and altering the spray pattern. Injector tip coking is also one of the most sensitive measures of diesel fuel quality [1]. A machine vision system was implemented to quantify injector coking accumulation when a compression ignition engine was fueled with oxydiesel.
Technical Paper

Influence of Intake Valve Lift on Flow Capacity of Intake Port

2019-04-02
2019-01-0223
A three-dimensional model of a diesel engine intake port was established and was verified by steady-flow test. Based on this model, the influence of intake valve lift on the flow capacity of intake port was studied and a design method of maximum valve lift was put forward. The results show that, under different intake pressure and relative pressure difference conditions, the discharge coefficient increases first and then converges with the increase of valve lift. Under the same valve lift condition, with the increase of relative pressure difference, the discharge coefficient decreases slightly in subsonic state and decreases sharply from subsonic state to supersonic state, but the mass flow rate increases slightly. The optimum ratio of valve lift and valve seat diameter is related to relative pressure difference, it increases first and then keeps constant with the increase of relative pressure difference.
Technical Paper

In-Cylinder Measurements of Liquid Fuel During the Intake Stroke of a Port-Injected Spark Ignition Engine

1997-10-01
972945
The presence and distribution of liquid fuel within an engine cylinder at cold start may adversely affect the hydrocarbon emissions from port-injected, spark ignition engines. Therefore, high speed videos of the liquid fuel entry into the cylinder of an optical engine were recorded in order to assess the effect of various engine operating parameters on the amount of liquid fuel inducted into the cylinder, the sizes of liquid drops present and the distribution of the fuel within the cylinder. A 2.5L, V-6, port-injected, spark ignition engine was modified so that optical access is available throughout the entire volume of one of the cylinders. A fused silica cylinder is sandwiched between the separated block and head of the engine and a “Bowditch-type” piston extension is mounted to the production piston. The Bowditch piston has a fused silica crown so that visualization is possible through the top of the piston as well as through the transparent cylinder.
Technical Paper

High-Load Compression-Ignition Engine Emissions Reduction with Inverted Phi-Sensitivity Fuel Using Multiple Injection Strategies

2019-04-02
2019-01-0554
Inverted phi (ϕ)-sensitivity is a new approach of NOx reduction in compression-ignition (C.I.) engines. Previously, pure ethanol (E100) was selected as the preliminary test fuel in a single injection compression-ignition engine, and was shown to have good potential for low engine-out NOx emissions under low and medium load conditions due to its inverted ignition sequence. Under high load, however, the near-stoichiometric and non-homogeneous fuel/air distribution removes the effectiveness of the inverted ϕ-sensitivity. Therefore, it is desirable to recover the combustion sequence in the chamber such that the leaner region is burned before the near-stoichiometric region. When the combustion in near-stoichiometric region is inhibited, the temperature rise of that region is hindered and the formation of NOx is suppressed.
Technical Paper

GRC-Net: Fusing GAT-Based 4D Radar and Camera for 3D Object Detection

2023-12-31
2023-01-7088
The fusion of multi-modal perception in autonomous driving plays a pivotal role in vehicle behavior decision-making. However, much of the previous research has predominantly focused on the fusion of Lidar and cameras. Although Lidar offers an ample supply of point cloud data, its high cost and the substantial volume of point cloud data can lead to computational delays. Consequently, investigating perception fusion under the context of 4D millimeter-wave radar is of paramount importance for cost reduction and enhanced safety. Nevertheless, 4D millimeter-wave radar faces challenges including sparse point clouds, limited information content, and a lack of fusion strategies. In this paper, we introduce, for the first time, an approach that leverages Graph Neural Networks to assist in expressing features from 4D millimeter-wave radar point clouds. This approach effectively extracts unstructured point cloud features, addressing the loss of object detection due to sparsity.
Journal Article

Fuzzy-PID Speed Control of Diesel Engine Based on Load Estimation

2015-04-14
2015-01-1627
In order to improve the anti-disturbance performance of engine-load and the effect on speed control for the diesel engine, the paper presents the fuzzy-PID speed control strategy in the architecture of torque-based control. The engine-load estimation algorithm is designed based on the mean-value-model and crankshaft dynamics model, and the estimation precision is validated by engine test in both steady and dynamic conditions. Through the experiment verification of the diesel engine, the fuzzy-PID control strategy based on load estimation can significantly improve the anti-disturbance performance of engine-load in the speed control.
X